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Abstract

Background: Despite their nearly identical genomes, males and females differ in risk, incidence, prevalence, severity
and age-at-onset of many diseases. Sexual dimorphism is also seen in human autosomal gene expression, and has
largely been explored by examining the contribution of genotype-by-sex interactions to variation in gene expression.

Results: In this study, we use data from a mixture of pedigree and unrelated individuals with verified European
ancestry to investigate the sex-specific genetic architecture of gene expression measured in whole blood across
n = 1048 males and n = 1005 females by treating gene expression intensities in the sexes as two distinct traits and
estimating the genetic correlation (rG) between them. These correlations measure the similarity of the combined
additive genetic effects of all single-nucleotide polymorphisms across the autosomal chromosomes, and thus the
level of common genetic control of gene expression across the sexes. Genetic correlations are estimated across the
sexes for the expression levels of 12,528 autosomal gene expression probes using bivariate GREML, and tested for
differences in autosomal genetic control of gene expression across the sexes. Overall, no deviation of the distribution
of test statistics is observed from that expected under the null hypothesis of a common autosomal genetic
architecture for gene expression across the sexes.

Conclusions: These results suggest that males and females share the same common genetic control of gene
expression.
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Background
Despite their nearly identical genomes [1], males and
females differ in risk, incidence, prevalence, severity and
age-at-onset of many diseases including autoimmune dis-
eases [2], cancers [3, 4], cardiovascular diseases [5], and
neurological and psychiatric disorders [6–9]. It has been
postulated that humans have a sex-specific genetic archi-
tecture, where for example, dosage differences in X-linked
genes are thought to account for some of the sex-specific
genetic architecture of phenotypes, and that the auto-
somal contribution of phenotypic differences across the
sexes is due to differences in the regulation of genes rather
than the gene content [10]. Motivated by observing large
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mean differences in phenotypes across the sexes, studies
investigating the sex-specific genetic architecture of phe-
notypes typically have used a sex-stratified genome-wide
association study (GWAS) or genotype-by-sex interaction
approach [11, 12].
Recent studies have examined the sex-specific autoso-

mal genetic architecture of high-level human complex
traits by treating them as two distinct traits for males
and females, and estimating the autosomal genetic corre-
lation across the sexes [13, 14]. The genetic correlation
between two traits is a measure of the common segre-
gating genetic variants causing simultaneous variation in
both traits, and by definition ranges from −1 to 1 [15].
The degree of genetic correlation expresses the extent to
which these two traits are influenced by the same genetic
variants and, in theory, represents the combined addi-
tive genetic effects of all causal loci across the genome,
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and thus the level of common genetic control; in prac-
tice, however, where DNAmicroarray data are used to tag
genetic variants assumed to be in linkage disequilibrium
with unknown causal variants, the genetic correlation rep-
resents the aggregate genetic effect of all tagged genetic
variants across the genome. The genetic correlations of
these high-level human complex traits were found to be
large and positive, indicating that the additive genetic
effects of all genetic variants across the autosomes have
the same effect on these phenotypes in both sexes. Simi-
lar results have been observed in other species, where the
majority of genetic correlation estimates were found to
be large and positive, and rare cases where estimates are
negative were related to fitness [16].
Gene expression can be thought of as a low level or

intermediate trait and can be used to help understand
the genetic andmolecular basis for phenotypic differences
across sexes. Like the study of high-level human com-
plex traits, the sex-specific genetic architecture of gene
expression in humans has largely been explored by exam-
ining the contribution of genotype-by-sex interactions
to variation in gene expression (i.e. sex-specific eQTLs)
[17–19]. Overall, there has been weak evidence for sex-
specific eQTLs, which range from claims that 15% of
detected cis-eQTLs show sex-specific effects in lym-
phoblastoid cell lines [17], to six autosomal and X chro-
mosome genes showing sex-specific eQTLs in whole
blood [19], to zero detected sex-specific eQTLs in cere-
bellar and frontal cortex brain tissue [18]. Potential rea-
sons for these observations are: (1) the contribution of
genotype-by-sex interactions to variation in gene expres-
sion may be tissue-specific, since sexually dimorphic
genes have shown tissue-specific patterns [20–22]; (2)
without sufficiently large sample sizes, the power to detect
sex-specific eQTLs can be low, since there would need to
be a correction to the significance threshold to account
for both the number of genetic variants and the number
of genes tested; or (3) the contribution of genotype-by-
sex interactions to variation in gene expression occurs
in a small number of genes, and, on average, males and
females share the same common genetic control of gene
expression.
In this study, we examine the sex-specific genetic archi-

tecture of gene expression measured in whole blood by
estimating the genetic correlation (rG) of 12,528 autoso-
mal gene expression probes across n = 1048 males and
n = 1005 females. By treating gene expression intensities
in the sexes as two distinct traits, we estimate the com-
bined additive genetic effects of all single-nucleotide poly-
morphisms (SNPs) across the autosomal chromosomes,
and thus the level of common genetic control of gene
expression across the sexes. In this context, rG = 1 means
that males and females share the same common genetic
control of gene expression, while any rG < 1 indicates

that the genetic control of gene expression differs across
the sexes.

Results
Gene expression and genotype data were available from
a concatenated dataset of n = 2053 pedigree and unre-
lated individuals from three distinct cohorts with veri-
fied European ancestry (see ‘Methods’). Gene expression
probes were restricted to those with estimated heritability
greater than 10%, since estimating the genetic correlation
of gene expression across the sexes requires a heritable
component in both sexes (see ‘Methods’). We first con-
firmed extensive sexually dimorphic gene expression in
12,528 autosomal gene expression probes across n = 1048
males and n = 1005 females. A total of 1413 autosomal
probes corresponding to 1266 unique genes showed sig-
nificant mean differences in expression intensities across
the sexes at a Bonferroni corrected threshold of P =
3.99 × 10−6 (Additional file 1: Figure S1). The propor-
tion of these probes showing higher expression in one
sex over the other was approximately even, with 50.5%
of these probes (713 of the 1413 probes) showing higher
expression in females compared to males.
The bivariate GREML method [23] implemented in

the GCTA software [24] was then used to estimate the
genetic correlation of these 12,528 gene expression probes
across the sexes captured by 796,005 imputed autosomal
HapMap3 SNPs. The bivariate GREML method allows us
to treat each gene expression probe as a distinct trait for
males and females from which genetic correlations are
estimated (see ‘Methods’). Each estimate was tested for
deviation from rG = 1, which indicates that the autoso-
mal genetic control of gene expression differs across the
sexes. A total of 28 of these analyses did not converge and
were discarded. The quantile–quantile plot for expected
versus observed P values from a likelihood ratio test is
illustrated in Fig. 1. As shown, the distribution of P values
is initially flat with values of 0.5, which is attributed to the
likelihood ratio test being on the edge of the parameter
space (see ‘Methods’) [25]. Subsequently, the distribution
closely follows the null distribution with little deviation
of the test statistics from the expected (genomic con-
trol, λGC = 1.05). The left panel of Fig. 2 illustrates the
distribution of the estimated rG. As shown, the distri-
bution is skewed towards 1, with a large peak at values
close to 1. The median estimate across all tested probes is
rG = 1.00 indicating that, on average, males and females
share the same common genetic control of gene expres-
sion. The right panel of Fig. 2 compares the estimated rG
with their corresponding P value. As shown, no probes
satisfied the Bonferroni corrected significance threshold
of P = 3.99 × 10−6, which accounts for the number of
probes tested. The smallest P value corresponded to the
cell division cycle 34 (CDC34) gene on chromosome 19
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Fig. 1 Quantile–quantile plot for expected versus observed P values
from a test of genetic correlation of 12,500 genome-wide gene
expression probes across males and females. The distribution of P
values is initially flat for values of 0.5, which is attributed to the
likelihood ratio test being on the edge of the parameter space.
Subsequently, the distribution closely follows the null distribution
with little deviation of the test statistics from the expected

with estimated rG = 0.36 (P = 8.45 × 10−6) (Table 1).
CDC34 encodes a protein that is a part of a large multi-
protein complex that is required for ubiquitin-mediated
degradation of cell cycle G1 regulators, and for the initia-
tion of DNA replication. As cell counts may differ across
the sexes, we also adjusted the bivariate GREML model
for a mixture of predicted and measured cell-count pro-
portions (see ‘Methods’). In this analysis, the CDC34 gene
deviated further from rG = 1 with estimated rG =
0.33 (P = 2.24 × 10−6), which satisfied the Bonferroni
significance threshold. A test for sexual dimorphism in
gene expression at the CDC34 gene revealed higher gene
expression intensities in females compared to males (β̂ =
0.284, SE = 0.043; P = 3.66 × 10−11) (Fig. 3).
We performed additional sensitivity analyses, includ-

ing an unconstrained bivariate GREML analysis that gives
unbiased estimates of rG by allowing the estimates to
go beyond the parameter boundary [−1, 1]. Additional
file 1: Figure S2 illustrates the distribution of the uncon-
strained estimates of rG, which had median rG = 1.01
across all tested probes. We did not observe any trends
when examining the relationship between unconstrained
estimates of rG and mean differences in gene expression
across the sexes (Fig. 4). This is consistent with results
from the study of the sex-specific genetic architecture of
high-level human complex traits [26], but is in contrast to
the observation of a negative relationship in a review of

other multiple species, which found that traits with large
mean phenotypic differences across the sexes had small or
negative genetic correlations [16].
To test if there was common functionality in the 100

probes with the most nominally significant deviation from
rG = 1, we performed a gene ontology (GO) analysis
using the DAVID functional annotation tool. This tested
for significantly enriched biological process (BP) terms,
molecular function (MF) terms and cellular component
(CC) terms using a significance threshold of P < 0.01
[27, 28]. There were no MF or CC terms with P < 0.01.
There was weak enrichment for BP terms, with the top
terms corresponding to immune response (GO:0006955;
P = 2.00 × 10−3) and regulation of multi-organism pro-
cess (GO:0043900; P = 0.01); however, these terms did
not survive a correction for multiple testing.

Discussion and conclusions
This study examined the sex-specific genetic architecture
of gene expression by estimating the genetic correla-
tion of gene expression across the sexes. We first con-
firmed extensive sexual dimorphism in gene expression by
demonstrating that 1413 autosomal probes corresponding
to 1266 unique genes showed significant mean differ-
ences in gene expression intensities across the sexes. Such
results have been the motivation for sex-stratified GWAS
or genotype-by-sex interaction studies. Despite this, how-
ever, the median of rG estimates across all tested probes is
approximately 1, indicating that males and females share
the same common genetic control of gene expression in
whole blood. We did not observe any trends when exam-
ining the relationship between unconstrained estimates
of rG and mean differences in gene expression across the
sexes, which is consistent with results from the study of
sex-specific autosomal genetic architecture of high-level
human complex traits [26], but is in contrast to the nega-
tive relationship observed in a study of other species [16].
Finally, a GO analysis revealed that the 100 probes with
the most nominally significant deviation from rG = 1
were weakly enriched for immune response and regula-
tion of multi-organism process biological process terms
with P < 0.01, but did not survive a correction for
multiple testing. The results from this study are broadly
consistent with those observed in an examination of
sex-specific autosomal genetic architecture of high-level
human complex traits, which found estimated genetic cor-
relations to be large and positive, indicating thatmales and
females share the same common genetic control of these
traits [13, 14].
These results address the weak evidence found in the

literature for sex-specific eQTLs. In particular, they point
to the possibility that the contribution of genotype-by-
sex interactions to variation in gene expression may occur
in a relatively small number of genes, and on average,
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Fig. 2 Distribution of 12,500 estimated genetic correlations of gene expression across males and females from a bivariate GREML analysis. Left: The
distribution of the estimated rG is skewed towards rG = 1.00, with a large peak at values close to rG = 1.00. The median estimate across all tested
probes is rG = 1.00 indicating that, on average, males and females share the same common genetic control of gene expression. Right: The
estimated rG compared to their corresponding P value. No probes satisfied the Bonferroni corrected significance threshold of P = 3.99 × 10−6

Table 1 Ten most nominally significant probes from a bivariate GREML analysis testing genetic correlations that deviate from rG = 1

Probe Chr. Position Gene h2mal h2fem rG SE P

ILMN1713006 19 492686-492735 CDC34 0.68 0.64 0.36 0.14 8.45 × 10−6

ILMN2383058 20 1610083–1610132 SIRPG 0.68 0.54 0.27 0.15 3.54 × 10−5

ILMN1710017 17 59361234–59361283 CD79B 0.62 0.64 0.32 0.14 3.59 × 10−5

ILMN1796165 14 95080536–95080585 GLRX5 0.76 0.66 0.47 0.13 4.44 × 10−5

ILMN1715169 6 32654825–32654845 HLA-DRB1 0.94 0.86 0.72 0.08 1.23 × 10−4

ILMN1723520 1 156494456–156494505 CD1A 0.38 0.60 0.001 0.19 1.26 × 10−4

ILMN1675483 2 241418872–241418921 ANKMY1 0.67 0.70 0.53 0.13 1.64 × 10−4

ILMN1742001 1 145696009–145696058 CD160 0.70 0.67 0.42 0.13 1.75 × 10−4

ILMN1776998 15 76361232–76361281 DNAJA4 0.51 0.66 0.36 0.16 2.05 × 10−4

ILMN1662451 19 7659893–7659942 FCER2 0.74 0.70 0.47 0.13 2.15 × 10−4

No probes satisfied the Bonferroni corrected significance threshold of P = 3.99 × 10−6. The parameters h2mal and h2fem represent the estimated heritability for males and
females, respectively
Chr. Chromosome
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Fig. 3 Distribution of normalised gene expression intensities of
CDC34 for n = 1048 males and n = 1005 females. Higher gene
expression intensities are observed in females compared to males
(P = 3.66 × 10−11)

males and females share the same common genetic con-
trol of gene expression. This is consistent with the limited
findings in the literature for sex-specific eQTLs where,
for example, a study with a relatively large sample size of
n = 922 individuals detected six sex-specific eQTLs [19],
and a study with a relatively small sample size of n = 390
individuals was not able to detect sex-specific eQTLs [18].
This suggests that eQTLs that harbour true sex-specific
effects may occur in a small number of genes and with-
out sufficiently large sample sizes, the power to detect
them can be low. An outlier in the literature is a study
that claims that 15% of detected cis-eQTLs show sex-
specific effects, which corresponds to approximately 200
cis-eQTLs [17]. Individuals included in this study were
from four HapMap populations (n ≈ 100 individuals in

each), with each population stratified by sex for the anal-
ysis (approximately n ≈ 50 males and n ≈ 50 females
in each population). Therefore, the power to detect sex-
specific cis-eQTLs in this scenario would likely be low
given the sample sizes, and indeed, false discovery rates
in this study were reported to be approximately 20%.
Thus, the fraction of eQTLs that harbour true sex-specific
effects in this study is likely to be small.
Drawing parallels between the study of the sex-specific

genetic architecture of gene expression and high-level
complex traits may give us further insight into the inter-
pretation of our results. Like the study of sex-specific
eQTLs, demonstrating sex-specific genetic effects in high-
level complex traits has been challenging and largely
unsuccessful due to the lack of power to robustly detect
genotype-by-sex interactions [26]. Two recent studies
examined the sex-specific genetic architecture of height,
BMI and other high-level complex traits by estimating
genetic correlations across the sexes [13, 14]. If we con-
sider the results for height and BMI, it was shown that
by doubling the sample size from n ≈ 50, 000 individ-
uals to n ≈ 100, 000 individuals, there is a gain in the
accuracy of the rG estimates for these traits, but that the
estimates remain large and positive, indicating that males
and females share the same common genetic control for
these traits. Importantly, it was also shown that<1% of the
phenotypic variance for height and BMI can be explained
by incorporating sex-specific genetic effects [14]. Taken
together, these results indicate that the contribution of
genotype-by-sex interaction to variation in these traits is
relatively small compared to the main effect, and will thus
require very large sample sizes to detect them. That is,
results from these analyses do not rule out individual sex-
specific genetic effects, but, broadly, they diminish the
importance of genotype-by-sex interactions in the study
of high-level complex traits [26]. The true power of this
study does not come from individual tests for deviations
from rG = 1, but from estimating genetic correlations
across approximately 13,000 traits, allowing us to exam-
ine the distribution of rG estimates. Like the study of
high-level complex traits, this analysis does not rule out
individual sex-specific genetic effects, but, given the weak
evidence for sex-specific eQTLs and the distribution of rG
estimates skewed towards 1, these results are consistent
with the conclusion that the contribution of genotype-by-
sex interactions to variation in gene expression is small
and may occur in a relatively small number of genes. Fur-
ther, we can postulate that with an increase in sample
size, we can expect a corresponding increase in accuracy
for the estimates of genetic correlation in gene expres-
sion across the sexes, but on average, these estimates will
remain large and positive.
A limitation of the interpretation of our results is that

gene expression intensities weremeasured in whole blood.
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Fig. 4 No trend was observed when comparing unconstrained estimates of rG versus squared mean differences in gene expression across the sexes.
The red dots are 1413 autosomal probes that showed significant mean differences in gene expression across the sexes. The blue line is a lowess line.
Unconstrained rG estimates were constrained to −2.5 to 10.5 to ease visualisation

Since sexually dimorphic genes have been shown to have
tissue-specific patterns [20–22], it is possible that we may
observe differences in the genetic control of gene expres-
sion across sexes if expression intensities are measured
in other tissues. For example, if we measure gene expres-
sion in brain tissue, we may observe more cases where the
genetic control of the expression of genes related to neu-
rological and psychiatric disorders differs across the sexes.
Conversely, despite being an appropriate tissue, results
from our analysis in whole blood did not detect differ-
ences in the genetic control of the expression of genes
related to autoimmune diseases. Indeed, it would be of
interest to examine the distribution of rG estimates across
other tissue types, and in particular, if there is a signifi-
cant shift away from rG = 1; however, large sample sizes
in a variety of different tissue types would be required
for comprehensive investigation. One further limitation
is that the genetic correlations were estimated based on
common imputed HapMap3 SNPs Minor allele frequency
(MAF) > 0.01, but it is possible that rare variants of large
effect may individually have a different effect in males and
females, making them better discriminators between the
sexes. However, because common SNPs imputed to 1000
Genomes capture the majority of genetic variation [29], it
is unlikely that the aggregate effect of rare variants would

significantly shift the distribution of rG estimates away
from 1. That is, it is unlikely that the cumulative effect of
this missing part of the genetic (co)variance matrix would
decrease the estimates of genetic correlation. Indeed, this
was observed by Rawlik et al., where estimates of genetic
correlation using common SNPs and a combined set of
common and rare SNPs had a correlation of 0.98 across
19 complex traits [14]. Future work could explore this
in more detail; however, a comprehensive analysis would
require a considerably larger sample size and additional
methodological work to overcome the inherent bias in the
estimates with the inclusion of rare variants [29].
In conclusion, this study shows that the combined addi-

tive genetic effects of all SNPs across the autosomal
chromosomes have the same effect on gene expression
measured in whole blood in both sexes. These results are
consistent with previous studies of sexual dimorphism in
high-level complex traits in humans.

Methods
Study participants
Gene expression and genotype data were available in 2058
individuals from three distinct cohorts. Briefly, the Bris-
bane Systems Genetics Study (BSGS) is a family-based
study comprising 846 individuals of Northern European
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origin from 312 independent families [30, 31]. Families
consisted of adolescent monozygotic (MZ) or dizygotic
(DZ) twins, their siblings and parents. RNA was collected
from whole-blood samples with expression levels mea-
sured in 47,323 genome-wide probes using the Illumina
HumanHT-12 v4.0 Beadchip. Individuals were genotyped
using the Illumina 610-Quad Beadchip. Following stan-
dard quality control (QC) filtering, 528,509 SNPs were
available for analysis.
The Coronary Artery Disease (CAD) cohort comprised

147 unrelated individuals enrolled in the Emory Car-
diovascular Biobank, USA, with suspected or confirmed
CAD [32]. RNA was collected from whole-blood samples
with expression levels measured in 47,231 genome-wide
probes using the Illumina HumanHT-12 Beadchip. Indi-
viduals were genotyped using the Illumina OmniQuad
arrays, with 707,046 SNPs available for analysis.
Finally, the Estonian Genome Centre, University of

Tartu (EGCUT) cohort consisted of 1065 unrelated indi-
viduals from Estonia [33]. RNAwas collected from whole-
blood samples with expression levels measured in 48,803
genome-wide probes using the Illumina HumanHT-12
v3.0 Beadchip. Altogether, 903 unique individuals were
genotyped using the Illumina HumanCNV array and
162 unique individuals were genotyped using Human
OmniExpress-12 v1.0. A total of 335,036 and 710,831
SNPs were available for analysis from each genotype
dataset, respectively.
These gene expression and genotype datasets were con-

catenated following the QC procedures described below.

Gene expression normalisation and quality control
Gene expression normalisation was first carried out on
the individual gene expression datasets before concatena-
tion. Variance stabilisation was applied using the method
of Huber et al. [34] using the Bioconductor vsn pack-
age, followed by quantile normalisation. To account for
known procedural variances (i.e. batch effects) in the
BSGS cohort, we regressed gene expression levels for each
probe on the chip ID, position on the chip and extraction
date. Residuals from this analysis were carried forward
as the corrected expression levels. Similarly, for the CAD
and EGCUT cohorts, we regressed gene expression lev-
els for each probe on the first ten principal components
(PCs) and used the residuals as the corrected expression
levels for each cohort [35]. We verified that sex effects
were not removed from these corrected expression levels
in the CAD and EGCUT cohorts by examining the corre-
lation between the ten PCs and sex for each cohort; that
is, for each PC, we used a t-test to test for mean differ-
ences across the sexes in each cohort, with a significant
difference indicating that the corresponding PC removed
sex effects from gene expression intensities. We did not
detect significant differences in the ten PCs across the

sexes, indicating that sex effects were not removed during
PC correction (results not shown). A rank normal trans-
formation was applied to each gene expression dataset to
further standardise the gene expression levels. We con-
catenated these gene expression datasets by retaining a
total of 38,624 probes that were common to all cohorts.
To avoid false positive results due to technical artefacts

generated by cross-reactivity, we tested 36,951 autoso-
mal gene expression probes for cross-hybridisation with
X and/or Y chromosomes using BLAST [36]. Probes were
classified as cross-hybridising with sex chromosomes if
their sequences had 90% identity over the aligned region,
at least 40 of 50 matching bps, and no gaps. A total of
598 cross-hybridising probes were excluded. Additionally,
we filtered 24,702 probes with estimated heritability less
than 10%, 134 probes that were not significantly expressed
above background variation, 198 probes that were not
well characterised, 429 probes on the X chromosome and
35 probes on the Y chromosome. A total of 12,528 gene
expression probes targeting 10,274 genes on the autosome
were available for analysis.

Genotype imputation and quality control
We imputed autosomal genotype data for each cohort
by first estimating haplotypes using HAPI-UR: HAPlo-
type Inference for UnRelated samples, Version 1.01 [37].
Haplotype estimates were then passed to IMPUTE2 [38]
for imputation to 1000 Genomes Phase 1, Version 3.
Following imputation, each genotype dataset contained
approximately 38million autosomal SNPs. The total num-
ber of SNPs was reduced to 5,398,402 by removing SNPs
with an info score threshold of less than 0.9 [29], and by
retaining SNPs that were common to all datasets. PLINK
[39] was used to merge the datasets to form the final
concatenated genotype dataset. Approximately 500 SNPs
were excluded due to multi-allelic differences between
cohorts. SNPs were excluded from the concatenated geno-
type dataset with Minor allele frequency (MAF) < 0.01
and Hardy–Weinberg equilibrium test P < 10−6 leaving
5,373,355 autosomal SNPs. We retained 796,005 autoso-
mal HapMap3 SNPs that were common in the concate-
nated dataset to calculate a genetic relatedness matrix
(GRM).
Five individuals from the CAD cohort showed evidence

of non-European ancestry from multidimensional scaling
analysis and were excluded. A total of 2053 individuals
were available for analyses.

Predicting cell counts
The proportion of neutrophils, lymphocytes and mono-
cytes were predicted for individuals in the BSGS (n =
223), CAD (n = 142) and EGCUT (n = 1065)
cohorts from a deconvolution method proposed in [40]
using raw gene expression intensities from 38,624 probes.
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Predicted cell-count proportions were obtained using the
gedBlood command and the standard least squares regres-
sion approach in the CellMix package in R [41]. The
method was first validated in the n = 623 individuals in
the BSGS cohort where measured cell-count proportions
were available (Additional file 1: Figure S3).

Sexually dimorphic gene expression
Differences in gene expression across the sexes were
examined using a mixed linear regression model imple-
mented in GCTA [24] to model gene expression levels as
a linear function of male and female status. This can be
written as

yi = ai + Xbi + g + ei (1)

where y is an n × 1 vector of gene expression levels for
probe i; a is the mean expression; b is the effect esti-
mate for a fixed sex covariate, X, where males are coded
0 and females are coded 1; g, a random component to
capture the polygenic effect and sample structure in the
data; and e is the residual. The coefficient b can be inter-
preted as the difference in gene expression levels between
males and females. We used the Wald statistic, calculated
as the square of the effect estimate divided by the square
of the standard error, to assess significance. A P value
was calculated from a χ2-distribution with one degree of
freedom.

Bivariate GREML analysis
To remove the effect of the difference in proportions of
males and females across the cohort, a rank normal trans-
formation was first applied to the gene expression matrix
for males and females separately within each cohort. The
genetic correlation (rG) betweenmales (m) and females (f )
for each gene expression probe was defined as

rG = cov(gm, gf)√
var(gm) var(gf)

(2)

where cov(gm, gf) is the estimated genetic covariance of
gene expression levels at the probe sites between males
and females, and var(gm) and var(gf) are the estimated
genetic variances of gene expression levels at the probe
sites for males and females, respectively.
We used the bivariate GREML method [23] imple-

mented in the GCTA software [24] to estimate the genetic
variance of gene expression for males and females, and
the genetic covariance of gene expression between males
and females that can be captured by 796,005 autosomal
HapMap3 SNPs. The linear mixed-effects models for each
sex can be written as.,

ym = Xmbm + gm + em (3)

yf = Xfbf + gf + ef (4)

where ym and yf are n × 1 vectors of gene expression
levels for males and females, respectively. For ym, we des-
ignate all gene expression levels measured in females as
missing; similarly for yf, we designate all gene expres-
sion levels measured in males as missing. b are vectors of
fixed effects, g are random polygenic effects, X is the inci-
dence matrix for the effects of b and e are residuals for
each of the models. The variance-covariance matrix was
defined as

V =
[
Amσ 2

gm + Iσ 2
em Am,f σ

2
gmgf

Am,f σ
2
gmgf Afσ

2
gf + Iσ 2

ef

]

whereAm andAf are GRMs formales and females, respec-
tively, and Am,f is the GRM between males and females
based on SNP information. I is the identity matrix. σ 2

G,
σ 2
e and σ 2

gmgf are the genetic variance for each sex, resid-
ual variance for each sex and covariance between gm and
gf, respectively. rG was calculated for each probe using
Eq. 2 and was tested against the null hypothesis that the
genetic correlation is fixed at rG = 1.We used a likelihood
ratio test statistic to assess significance and calculated the
P value from a χ2-distribution. Due to the test being on
the edge of the parameter space, the likelihood ratio test
statistic is distributed as a 50:50 mixture of a point mass
at 0 and a χ2

1 -distribution [25]. We used the Bonferroni
method to account for multiple testing.
We also performed an additional unconstrained bivari-

ate GREML analysis using the -reml-no-constrain
command in GCTA to obtain an unbiased estimate of
rG by allowing the estimates to go beyond the param-
eter boundary [−1, 1]. Here, the likelihood ratio test
statistic was compared to a χ2

1 -distribution to calculate
a P value. The bivariate models were also adjusted for
a mixture of predicted and measured cell-count propor-
tions: three continuous fixed-effect covariates for neu-
trophils, lymphocytes and monocytes as described pre-
viously, using actual values for n = 623 individuals in
the BSGS cohort and predicted values for the remaining
individuals.

Functional and pathway enrichment analysis
We performed a GO analysis on the 100 most nominally
significant genes showing deviation from rG = 1 using
the DAVID functional annotation tool. This tested for sig-
nificantly enriched BP terms, MF terms and CC terms
[27, 28]. We report the associated GO functional cate-
gory and pathways with P < 0.01. Multiple testing was
accounted for with the Bonferroni method.
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